您現在的位置:首頁 > 背景提升 > 密集項目:公共衛(wèi)生學專題:統計學視角下的公共人口健康數據分析與生存環(huán)境優(yōu)化策略探究
驗證碼

獲取驗證碼

密集項目:公共衛(wèi)生學專題:統計學視角下的公共人口健康數據分析與生存環(huán)境優(yōu)化策略探究

專業(yè):自然科學

項目類型:國外小組科研

開始時間:2024年11月09日

是否可加論文:是

項目周期:4周在線小組科研學習+2周不限時論文指導學習

語言:英文

有無剩余名額:名額充足

建議學生年級:大學生 高中生

是否必需面試:否

適合專業(yè):生物學抗擊冠狀病毒統計學生物統計學公共衛(wèi)生學生物醫(yī)學統計生物醫(yī)學生物統計流行病學生命科學公共衛(wèi)生

地點:無

建議選修:定量研究分析方法

建議具備的基礎:流行病學、公共衛(wèi)生學、流行病統計學等專業(yè)學生;對數據科學與統計在公共衛(wèi)生與生物醫(yī)學中的應用感興趣的學生;學生需要具備數理統計、R語言和一些常用庫的使用及數據操作基礎

產出:4周在線小組科研學習+2周不限時論文指導學習 共125課時 項目報告 優(yōu)秀學員獲主導師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(可用于申請) 結業(yè)證書 成績單

項目背景:生物統計旨在運用數理原理和方法,分析與闡釋生物數據和現象,力圖把握本質規(guī)律,解決生物、醫(yī)學、公共衛(wèi)生問題。數據科學的蓬勃發(fā)展及其在金融等諸多領域的落地為生物醫(yī)學和公共衛(wèi)生統計分析提供了新方法。目前,R語言、Matlab、SPSS都是全球范圍內較為普及的生物信息統計分析工具。項目將廣泛介紹統計數據科學在公共衛(wèi)生和生物醫(yī)學中的前沿應用,指導學生使用技術和軟件完成探索性和更高級的回歸分析,幫助學生將技巧應用到解決實際問題中,直接體驗數據科學統計技巧對生物醫(yī)學領域的潛在和重要影響。

項目介紹:本項目將深入探討R語言在公共衛(wèi)生領域的廣泛應用,為學生提供全面的統計學知識和實踐技能。學生將學習如何使用R語言進行數據處理、分析和可視化,強調在公共衛(wèi)生研究中的具體應用。項目內容包括R語言的基礎語法和數據結構,以及如何運用R進行常見的統計方法,如回歸分析、方差分析、生存分析等,使用R語言包包括tidyverse、dplyr、ggplot等。通過理論教學和實際案例,學生將掌握R語言的高級編程技巧,有效處理衛(wèi)生領域的大型數據集。特別強調課程將關注R語言在流行病學研究、健康數據分析、臨床試驗設計等方面的應用。學生將通過實際項目和案例研究,培養(yǎng)對真實衛(wèi)生數據的處理和解釋能力,從而更好地理解和應用統計學方法。無論是對于初學者還是有一定統計學基礎的學生,本課程都將為其提供一個全面的R語言統計學培訓,使他們能夠在未來的公共衛(wèi)生研究和實踐中靈活應用統計學方法。在項目結束時,提交項目報告,進行成果展示。This program will explore in depth the wide application of R in the field of public health, providing students with comprehensive statistical knowledge and practical skills. Students will learn how to use R for data processing, analysis, and visualization, emphasizing specific applications in public health research. The content of the project includes the basic syntax and data structure of R language, and how to use R to carry out common statistical methods, such as regression analysis, analysis of variance, survival analysis, etc., the use of the R language package including tidyverse, dplyr, ggplot, etc. Through theoretical instruction and practical cases, students will acquire advanced programming skills in the R language to effectively handle large data sets in the health field. In particular, the course will focus on the application of R language in epidemiological research, health data analysis, clinical trial design, etc. Students will develop the ability to process and interpret real health data through practical projects and case studies to better understand and apply statistical methods. For both beginners and students with a background in statistics, this course will provide them with comprehensive R language statistics training that will enable them to flexibly apply statistical methods in future public health research and practice. At the end of the project, submit the project report and present the results.

個性化研究課題參考:傳染病預測預警;生物統計模型在PAHs致人群健康損害危險度評價中的應用研究;生物統計學在降血糖新藥療效評估中的應用
Suggested Future Research Fields: Infectious disease prediction and warning;Research on the application of the biostatistics model in the evaluation of the risk of population health damage caused by PAHs;Application of Biostatistics in Evaluating the Efficacy of New Drugs for Lowering Blood Sugar

項目大綱:統計數據科學概論、數據科學對公共衛(wèi)生與生物醫(yī)學的應用;R語言介紹、RStudio和tidyverse的介紹 Introduction to statistical data science; applications in public health and biomedicine. Introduction to R, RStudio, and the tidyverse. R語言真實數據實操演示 Further practice with R and RStudio, illustration using example real-life data. 數據的讀取和操作、R語言之dplyr、R語言之ggplot數據圖形化和探索性分析、預測模型-線性回歸 Reading data, data manipulation with dplyr, exploratory data analysis with ggplot2 數據操作實踐,圖形化數據摘要案例學習Practice with data manipulation, further examples of graphical data summaries 線性回歸、邏輯回歸、機器學習導論Linear regression modeling, logistic regression modeling, introduction to machine learning 回歸分析數據案例學習,以診斷圖為例 Practical application of regression techniques to real-life data examples, some diagnostic plots. 監(jiān)督和無監(jiān)督學習算法,決策樹算法,聚類算法 Supervised and unsupervised learning algorithms, tree-based methods, clustering, and other approaches. Validation of methods 使用樣本數據進行算法實踐 Application of the algorithms discussed in lecture to sample data, illustration of validation analysis. 項目回顧與成果展示 Program Review and Presentation 論文輔導 Project Deliverables Tutoring

更多課程分類
驗證碼

獲取驗證碼