您現(xiàn)在的位置:首頁(yè) > 背景提升 > 博雅計(jì)劃:金融學(xué)課題:金融市場(chǎng)分析、投資策略實(shí)訓(xùn)與Python數(shù)據(jù)可視化---解構(gòu)華爾街對(duì)沖基金和投行的程序化交易策略與風(fēng)險(xiǎn)預(yù)測(cè)
驗(yàn)證碼

獲取驗(yàn)證碼

博雅計(jì)劃—博雅計(jì)劃:金融學(xué)課題:金融市場(chǎng)分析、投資策略實(shí)訓(xùn)與Python數(shù)據(jù)可視化---解構(gòu)華爾街對(duì)沖基金和投行的程序化交易策略與風(fēng)險(xiǎn)預(yù)測(cè)

開(kāi)始日期:

2023年7月15日

專(zhuān)業(yè)方向:

金融商科,計(jì)算機(jī)與人工智能

導(dǎo)師:

Ken(城堡對(duì)沖基金 金融投資家&銀行家)

課程周期:

7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí)

語(yǔ)言:

英文

建議學(xué)生年級(jí):

大學(xué)生


項(xiàng)目產(chǎn)出:

7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí) 項(xiàng)目報(bào)告 EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(共同一作) 結(jié)業(yè)證書(shū) 成績(jī)單


項(xiàng)目介紹:

“量化”金融工作和“非量化”金融工作之間的界限越來(lái)越模糊,金融從業(yè)者越來(lái)越被期望具有一定的計(jì)算機(jī)編程熟練程度,或至少接觸編程工具和方法,即使他們的背景不專(zhuān)注于計(jì)算機(jī)科學(xué)。即使你未來(lái)的工作和研究不集中在量化金融上,你也應(yīng)該發(fā)現(xiàn)這些計(jì)算機(jī)工具提供了諸多便捷。本課程將介紹核心的Python工具和金融投資概念,這些概念將為學(xué)生提供當(dāng)下對(duì)沖基金和投行的核心交易工作基礎(chǔ)。導(dǎo)師將把華爾街主流對(duì)沖基金和投行的程序化交易策略與現(xiàn)有的金融理論知識(shí)有機(jī)的結(jié)合。在整個(gè)課程中,我們將使用Excel、Pivot表等非編程技術(shù)介紹傳統(tǒng)金融投資與市場(chǎng)分析方法,然后利用投行和對(duì)沖基金公司常用的Python語(yǔ)言構(gòu)架進(jìn)行深度的實(shí)戰(zhàn)演練和研究。課程將通過(guò)Python將傳統(tǒng)的金融市場(chǎng)交易和數(shù)據(jù)進(jìn)行可視化提煉有優(yōu)化,例如股票市場(chǎng)的投資組合和其相對(duì)應(yīng)的投資風(fēng)險(xiǎn),以及利用時(shí)間序列模型對(duì)現(xiàn)實(shí)金融數(shù)據(jù)進(jìn)行預(yù)測(cè)和檢驗(yàn),最終以可視化的形式呈現(xiàn)給大家。 The line between “quant” and “non-quant” finance jobs is increasingly blurry, and practitioners in computational finance are increasingly expected to have some proficiency or at least exposure to programming tools and methods, even if their background does not focus on computer science. Even if your interest does not focus on quantitative finance, you should find it helpful to have some background in these sorts of tools. This class will introduce some basic tools and concepts that will give the student a working foundation in modern computational tools and techniques, focusing on the Python programming languages and associated toolkits. Throughout the class, we will introduce certain concepts using non-programming techniques such as Excel, Pivot tables, etc., and then do the same examples in Python. By the end of the class, you will be able to acquire, process, and interpret data and produce output and analysis.

更多課程分類(lèi)
驗(yàn)證碼

獲取驗(yàn)證碼