- 關(guān)于我們
- 針對假冒留學(xué)監(jiān)理網(wǎng)的聲明
- 留學(xué)熱線:4000-315-285
留學(xué)中介口碑查詢
開始日期:
2023年10月28日
專業(yè)方向:
計算機與人工智能
導(dǎo)師:
Patrick(牛津大學(xué) University of Oxford 終身教授)
課程周期:
4周在線小組科研學(xué)習(xí)+2周不限時論文指導(dǎo)學(xué)習(xí)
語言:
英文
建議學(xué)生年級:
大學(xué)生 高中生
項目產(chǎn)出:
4周在線小組科研學(xué)習(xí)+2周不限時論文指導(dǎo)學(xué)習(xí) 共125課時 項目報告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(dǎo)(可用于申請) 結(jié)業(yè)證書 成績單
項目介紹:
2017年,摩根大通發(fā)布了一份題為《大數(shù)據(jù)與人工智能戰(zhàn)略:機器學(xué)習(xí)和其它投資數(shù)據(jù)分析方法》的報告,對機器學(xué)習(xí)對金融領(lǐng)域的影響進行了全面的闡述,昭示著機器學(xué)習(xí)已經(jīng)敲開金融領(lǐng)域和商業(yè)數(shù)據(jù)分析的大門。機器學(xué)習(xí)是什么?如何與商業(yè)分析相結(jié)合?項目將通過介紹兩種非常實用的商業(yè)分析工具,即Python編程語言和機器學(xué)習(xí)工具包,幫助學(xué)生厘清上述問題的答案。學(xué)生將著重了解機器學(xué)習(xí)在商業(yè)分析股市預(yù)測中的應(yīng)用,利用機器學(xué)習(xí)分析市場數(shù)據(jù)解決商業(yè)問題。該項目內(nèi)容包括機器學(xué)習(xí)與數(shù)據(jù)科學(xué)概論、商業(yè)分析中市場數(shù)據(jù)處理的機器學(xué)習(xí)技術(shù)與算法、Python與Jupiter notebooks交互式學(xué)習(xí)、機器學(xué)習(xí)庫、股市預(yù)測等。學(xué)生將在項目中學(xué)習(xí)如何使用機器學(xué)習(xí)完成商業(yè)市場數(shù)據(jù)分析,進行股市預(yù)測,在項目結(jié)束時,提交項目報告,進行成果展示。 In 2017, JPMorgan Chase released a report entitled Big Data and AI Strategies: Machine Learning and Alternative Data Approach to Investing, which comprehensively elaborated the impact of machine learning on the financial sector, showing that machine learning has been introduced into the financial sector and business data analysis. What is machine learning? How to integrate it with business analysis? The program will help students clarify the answers to the above questions by introducing two useful business analysis tools, the Python programming language, and the machine learning toolkit. Students will focus on the application of machine learning in business analysis and stock market forecast, and use machine learning to analyze market data to solve business problems. The program covers an introduction to machine learning and data science, machine learning techniques and algorithms on market data processing in business analysis, interactive learning with Python and Jupiter notebooks, libraries for machine learning, and predicting the stock market. During the program, students will learn how to use machine learning to complete market data analysis, predict the stock market, and at the end of the program, submit a project report and present the results.