- 關(guān)于我們
- 針對(duì)假冒留學(xué)監(jiān)理網(wǎng)的聲明
- 留學(xué)熱線:4000-315-285
留學(xué)中介口碑查詢
專業(yè):人工智能
項(xiàng)目類型:國(guó)外小組科研
開(kāi)始時(shí)間:2024年10月26日
是否可加論文:是
項(xiàng)目周期:4周在線小組科研學(xué)習(xí)+2周不限時(shí)論文指導(dǎo)學(xué)習(xí)
語(yǔ)言:英文
有無(wú)剩余名額:名額充足
建議學(xué)生年級(jí):大學(xué)生
是否必需面試:否
適合專業(yè):計(jì)算機(jī)科學(xué)機(jī)器學(xué)習(xí)數(shù)據(jù)科學(xué)數(shù)據(jù)分析深度學(xué)習(xí)人工智能數(shù)據(jù)結(jié)構(gòu)與算法編程語(yǔ)言自然語(yǔ)言處理
地點(diǎn):無(wú)
建議選修:Python數(shù)據(jù)處理及其數(shù)學(xué)原理
建議具備的基礎(chǔ):計(jì)算機(jī)科學(xué)、人工智能、數(shù)據(jù)科學(xué)、電子與計(jì)算機(jī)工程等專業(yè),軟件工程、自動(dòng)化等相關(guān)專業(yè)或者希望掌握強(qiáng)化學(xué)習(xí)的學(xué)生;對(duì)人工智能、大數(shù)據(jù)以及交叉學(xué)科和方向感興趣的學(xué)生; 學(xué)生需要具備線性代數(shù)及概率論與數(shù)理統(tǒng)計(jì)基礎(chǔ),至少會(huì)使用一門編程語(yǔ)言實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò),有過(guò)強(qiáng)化學(xué)習(xí)開(kāi)發(fā)經(jīng)驗(yàn)的申請(qǐng)者優(yōu)先;
產(chǎn)出:4周在線小組科研學(xué)習(xí)+2周不限時(shí)論文指導(dǎo)學(xué)習(xí) 共125課時(shí) 項(xiàng)目報(bào)告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(可用于申請(qǐng)) 結(jié)業(yè)證書 成績(jī)單
項(xiàng)目背景:近年來(lái),人工智能數(shù)據(jù)科學(xué)技術(shù)不斷突破與發(fā)展。卷積神經(jīng)網(wǎng)絡(luò)CNN開(kāi)啟了深度學(xué)習(xí)新篇章,推動(dòng)計(jì)算機(jī)視覺(jué)落地自動(dòng)化駕駛等諸多領(lǐng)域;循環(huán)神經(jīng)網(wǎng)絡(luò)RNN推動(dòng)了自然語(yǔ)言處理,使得機(jī)器翻譯、智能語(yǔ)音技術(shù)日趨成熟;深度學(xué)習(xí)之上,強(qiáng)化學(xué)習(xí)圖神經(jīng)網(wǎng)絡(luò)GNN的崛起正在深度賦能數(shù)據(jù)挖掘,將成為企業(yè)場(chǎng)景拓展、數(shù)據(jù)整合、行業(yè)效率飛躍的關(guān)鍵。項(xiàng)目將聚焦強(qiáng)化學(xué)習(xí),特別是圖神經(jīng)網(wǎng)絡(luò)GNN這一構(gòu)筑未來(lái)數(shù)字生態(tài)的核心數(shù)據(jù)科學(xué)技術(shù)。
項(xiàng)目介紹:項(xiàng)目?jī)?nèi)容涉及強(qiáng)化學(xué)習(xí)核心理論和技能,具體包括遺傳算法、強(qiáng)化學(xué)習(xí)框架、Q-learning、行動(dòng)者-批評(píng)(actor-critic;AC)模型、馬爾可夫決策過(guò)程、優(yōu)化控制、圖神經(jīng)網(wǎng)絡(luò)(graph neural networks; GNN)、自動(dòng)機(jī)器學(xué)習(xí)(Auto ML)等。學(xué)生通過(guò)項(xiàng)目了解如何開(kāi)發(fā)基于強(qiáng)化學(xué)習(xí)的生產(chǎn)力軟件,在結(jié)束時(shí)提交項(xiàng)目個(gè)性化研究課題報(bào)告,進(jìn)行成果展示。
個(gè)性化研究課題參考:
強(qiáng)化學(xué)習(xí)在博弈論中的應(yīng)用:類alpha算法開(kāi)發(fā)
利用經(jīng)驗(yàn)留存解決強(qiáng)化學(xué)習(xí)所需樣本太多問(wèn)題的可行性分析
強(qiáng)化學(xué)習(xí)中的機(jī)器獎(jiǎng)勵(lì)設(shè)置方法迭代
為強(qiáng)化學(xué)習(xí)過(guò)擬合的特定場(chǎng)景重新建模的自動(dòng)過(guò)程研究
具有精確尺度估計(jì)的動(dòng)作-評(píng)價(jià)網(wǎng)絡(luò)結(jié)構(gòu)與強(qiáng)化學(xué)習(xí)優(yōu)勢(shì)函數(shù)
項(xiàng)目大綱:強(qiáng)化學(xué)習(xí):項(xiàng)目將在本周聚焦遺傳算法和強(qiáng)化學(xué)習(xí)框架。 Introduction to reinforcement learning 環(huán)境:強(qiáng)化學(xué)習(xí)由智能體和環(huán)境兩部分構(gòu)成。項(xiàng)目將在本周探討離策略、無(wú)模型強(qiáng)化學(xué)習(xí)算法 Q-learning、行動(dòng)者-批評(píng)(actor-critic;AC)模型、馬爾可夫決策過(guò)程等。Environment 優(yōu)化:項(xiàng)目將在本周深入學(xué)習(xí)強(qiáng)化學(xué)習(xí)與優(yōu)化控制。 Optimization 集成與控制 Integration and Control 集成:項(xiàng)目將在本周進(jìn)一步探討圖神經(jīng)網(wǎng)絡(luò)(graph neural networks; GNN)、自動(dòng)機(jī)器學(xué)習(xí)(Auto ML)等。 Integration 項(xiàng)目回顧與成果展示 Program Review and Presentation 論文輔導(dǎo) Project Deliverables Tutoring