- 關(guān)于我們
- 針對假冒留學監(jiān)理網(wǎng)的聲明
- 留學熱線:4000-315-285
留學中介口碑查詢
開始日期:
2023年7月22日
專業(yè)方向:
計算機與人工智能
導師:
Nick(芝加哥大學 The University of Chicago 講席終身正教授)
課程周期:
7周在線小組科研學習+5周不限時論文指導學習
語言:
英文
建議學生年級:
大學生
項目產(chǎn)出:
7周在線小組科研學習+5周不限時論文指導學習 共125課時 項目報告 優(yōu)秀學員獲主導師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(可用于申請) 結(jié)業(yè)證書 成績單
項目介紹:
項目內(nèi)容包括無監(jiān)督學習和監(jiān)督學習等機器學習入門概念,以及如何將以上概念應(yīng)用于網(wǎng)絡(luò)的實踐活動。學生將完成導師布置的課堂作業(yè),以及將機器學習應(yīng)用于網(wǎng)絡(luò)的項目,在項目結(jié)束時,提交項目報告,進行成果展示。 This course will provide students with a background in machine learning concepts, as well as how they apply to concepts in computer networking, ranging from network performance to network security. The course will include a primer in a range of machine learning concepts in both unsupervised and supervised learning, as well as hands-on activities that apply these machine learning concepts to network applications and data. Students will complete several hands-on lab assignments as well as a course project that involves the application of machine learning to networking. 個性化研究課題參考 Suggested Research Field: 利用機器學習算法進行網(wǎng)絡(luò)安全風險預測中的收斂性控制 Machine learning-based convergence control of network security risk prediction Android惡意軟件檢測方法性能比較 Review of performance comparison of Android malware detection methods 基于樸素貝葉斯分類器的惡意網(wǎng)站自動分類 An automatic classifier of Malicious Websites based on Naive Bayes