您現(xiàn)在的位置:首頁 > 背景提升 > 密集項目:人工智能與數(shù)據(jù)科學科研課題 基于Python/PyTorch的機器學習、CNN神經(jīng)網(wǎng)絡與推薦系統(tǒng)研究
驗證碼

獲取驗證碼

國外小組科研—密集項目:人工智能與數(shù)據(jù)科學科研課題 基于Python/PyTorch的機器學習、CNN神經(jīng)網(wǎng)絡與推薦系統(tǒng)研究

開始日期:

2023年7月8日

專業(yè)方向:

計算機與人工智能

導師:

Sorin(布朗大學 Brown University 講席終身正教授)

課程周期:

4周在線小組科研學習+2周不限時論文指導學習

語言:

英文

建議學生年級:

大學生 高中生


項目產(chǎn)出:

4周在線小組科研學習+2周不限時論文指導學習 共125課時 項目報告 優(yōu)秀學員獲主導師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(可用于申請) 結業(yè)證書 成績單


項目介紹:

項目中,導師將介紹用于知識發(fā)現(xiàn)的大數(shù)據(jù)挖掘的基礎編程模型和算法。學生對其代碼實現(xiàn)后,將使用真實生活中的數(shù)據(jù)集(如Yelp評論、亞馬遜交易和MovieLens數(shù)據(jù)等)進行模型訓練,并檢測出有意義的用戶偏好及習慣。在項目中后期,學生將結合所學知識及導師建議對基礎推薦算法及模型進一步優(yōu)化研究,構建一個新穎、準確且高效的個性化推薦系統(tǒng),并在項目結束時提交項目報告、進行成果展示。This program will introduce the fundamental programming models and algorithms used in mining Big Data for knowledge discovery. Specifically, the lecture will cover MapReduce, Frequent Itemset Mining, Clustering & Dimension Reduction, and Recommendation Systems. The assignments will include implementing algorithms introduced in the lecture to detect meaningful patterns from real datasets (e.g., Yelp reviews, Amazon transactions, and MovieLens data). At the end of the course, the students are expected to conduct a research project by combining the knowledge learned in class to build a novel recommendation system. 個性化研究課題參考 Suggested Research Fields 構建基于內(nèi)容的電影推薦系統(tǒng) Content-based movie recommender 構建基于協(xié)同過濾的推薦系統(tǒng) Building recommendation system based on collaborative filtering 構建一個混合位置的餐廳推薦系統(tǒng) Building a hybrid recommendation system for location 數(shù)據(jù)挖掘其他應用如:使用公開數(shù)據(jù)進行空氣質(zhì)量預測和預報 Other applications of data mining, such as air quality prediction and forecasting using open data

更多課程分類
驗證碼

獲取驗證碼